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Shock propagation into inhomogeneous media 
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(Received 19 December 1969) 

An analytic relation is derived for the shock front velocity as a function of the 
initial parameters (pressure, density, and particle velocity) in a continuous, in- 
homogeneous medium. This relation was verified experimentally by using it to  
predict the propagation of a shock wave through a known rarefaction wave. 

1. Introduction 
The propagation of shock waves into homogeneous gases is well understood, but 

the more general question of how shocks propagate into inhomogeneous media 
has not yet been completely answered. In an inhomogeneous medium, the initial 
pressure, density, and particle velocity each depend on position. The general 
problem has been solved partially in several previous studies. Chisnell (1955) 
considered shock propagation into a region of continuously varying density but 
with constant initial pressure. h o ,  Sakashita & Yamazaki (1958) extended 
Chisnell’s results to include pressure variation as well as density variation, but 
their results could not be written analytically. Whitham (1958) presented a more 
general study, and was able to obtain analytic results for shock propagation into 
a region of continuously varying density and pressure. Whitham’s results are 
not completely general, since he made several assumptions about the non- 
uniform region. He used the characteristic equation, and assumed that the 
pressure and density distributions are maintained in equilibrium by a force 
field or momentum source term. However, in general, the non-uniform region 
may first be unsteady, and secondly have energy and mass source terms appearing 
in the equations of motion. Whitham also makes the strong shock approximation 
so as to ignore the force term in the characteristic equation. In order to avoid 
these assumptions, a general study should consider the three fluid dynamic 
quantities as completely independent parameters. In  this study, we allow for a 
variation of all three initial parameters (pressure p l ,  density pl, and particle 
velocity ul) ahead of the shock, and we derive the velocity of the shock front as 
an analytic function ofp,, ply and ul. 

2. General flow field 
We consider the propagation of a shock wave through a one-dimensional, 

continuous, inhomogeneous medium, where the initial density, pressure, and 
particle velocity each vary smoothly as a function of position. The propagation 
of the initial shock through this region is well defined and a unique physical 
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process occurs, i.e. the shock velocity remains single-valued throughout the 
inhomogeneous .region. 

The shock wave velocity V is, in general, a function of the initial density, 
initial pressure, initial particle velocity, and the driving mechanism. The shock 
velocity is completely specified if these variables are given. In  most cases, the 
exact nature of the driving mechanism is not clearly known, and thus the shock 
velocity is usually treated as an independent parameter. Still, the shock velocity 
can be written in the functional form, 

= v(p1>p19 %7 0 3  (1 )  

where 6 corresponds, in some sense, to the driving mechanism. If we assume that 
the driving mechanism is constant, the rate of change of the shock velocity 
throughout the inhomogeneous region is given by differentiating (1) 

av avap ,  a v a p  avau _-  - - + __ 1 +- -1 ax - ap, ax ap, ax au, ax 
where p,, p,, and u1 are treated as completely independent parameters. In- 
tegrating (2) yields 

Thus, the problem of finding the shock velocity as a function of position X in 
the inhomogeneous region has been reduced to  the problem of finding three 
functions: 

(i) 8 V/ap, at constant p1 and ul. 
(ii) aV/ap, at constant p1 and u,. 
(iii) a V p u ,  at constant p ,  and p,. 
One of the partial derivatives a V/ap, has already been worked out by Chisnell, 

so that we only have to calculate aV/ap, and aV/au,. 

3. Partial derivatives 
The mathematical problem of finding 

is equivalent to the physical problem of finding the motion of a normal shock 
wave through a non-uniform, one-dimensional medium of continuously changing 
density, pressure, or particle velocity. We assume that the initial parameter 
increases monotonically with distance in a certain region and is uniform outside 
this region. A plane shock moves in the X-direction through the region X < X, 
with constant strength and uniform flow behind it. When the shock passes 
through the region of the changing parameter, its strength changes and a wave 
is reflected backwards from it. In  addition, the motion of the reflected wave 
through the non-uniform region generates another ‘doubly reflected ’ wave 
moving in the same direction as the incident shock. The mathematical complica- 
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tions encountered by considering the doubly reflected wave are enormous, so 
we make the approximation that this doubly reflected wave can be ignored. 
Chisnell (1955) and Obyama (1961) showed that this is a good approximation if 
either of the following conditions is met: (i) the incident shock can be described 
by the strong shock equations, or (ii) the gradients are not too large (reflected 
shock strength p2/pl  is less than 1.25). 

Following the method of Chisnell, the non-uniform region is regarded as a 
succession of small density, pressure, or particle velocity discontinuities separated 
by uniform regions. 

(i) First, we outline Chisnell’s derivation of aT‘/ap,. The corresponding physical 
situation is that of an infinitesimal density discontinuity (figure 1). The contact 
discontinuity under consideration (1,5) has no jump in pressure or fluid velocity, 
although there is an infinitesimal step in the density, such that 

P3 = Pl+dP, (4) 

while P3 = P4, P1 = 295, ( 5 )  

u3 = u4, u1 = u5. (6) 

The ratio of the pressure in region n to that in region m is given by the strength 
Z,, of the disturbance. Therefore, the pressure ratio of the incident shock is 
Z,, = p2/p1.  This parameter is introduced into the conservation equations, 

f l u 1  = P 2 V 2 ,  

and these equations are solved in terms of 2: 

where 

and g is the effective adiabatic constant (Ahlborn & Salvat 1967). 
Similar equations hold for the elements of the reflected wave (2,3), and differ 

with those for a shock only in third and higher powers of Z- 1. Therefore, we 
use the shock equations (8)-(10) for the small disturbances (2,3). 

Retnming to the conditions on the partical velocity and pressure ((5) and (6)), 
Chisnell obtained 

$(z127pl, P I )  - #(z23,p2, P 2 )  = #(2554?1)5, PB), (11) 

z 1 2 2 2 3  = z 5 4 .  (12) 
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Note that the increase in strength of the penetrated shock must be infinitesimal, 

z,, = Z,,+dZ. (13) so that 

By inserting (12), (13)) (8) and (4) into (11), and taking to the first order in 
smallness in terms of d p  and dZ, Chisnell obtained 

9 (14) 
dZ 2 1 

Distance 

FIGURE 1. When a shock wave (1 ,2)  crosses an infinitesimal discontinuity (1, 5 ) ,  it  
generates at the jump position a refracted shock wave (4, 5 ) ,  a reflected wave (2, 3), and 
a contact discontinuity (3,4). 

and, differentiating (10) with respect to p1 at constant p1 and ul, he obtained 

(16) 

(ii) The physical situation to consider in deriving aV/ap, is an infinitesimal 
pressure discontinuity, across which the particle velocity and density are con- 
tinuous. Although a rather unnatural type of discontinuity, imagine that some 
force field maintains it until the shock arrives, after which time the force field 
is removed. Such a discontinuity could be realized by a soap film which separates 
sections in the flow. The surface tension of the soap film supports a pressure 
discontinuity which, for instance, could be produced by heating one side. After 
the shock has passed, the soap film has evaporated and no surface tension remains. 

Again, as in figure 1, an incident shock wave generates at the jump position 
(1,5), a reflected wave (2,3), a penetrated shock (4,5), and a contact surface 
(3,4). The physical quantities before and behind the shock are again connected 
by the R,ankine-Hugoniot equations (8)-( 10). Across (1,5) we have 

where z ='(1-A2)(V-U1)2-A2. P 
P1 

u1 = u57 P1 = P5, P5 = Pl+dP; (17) 
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and, as previously, similar equations describe the particle velocity, and pressure : 

z12z23 = 215z45, 

#(212,plP1) -#('23?pZ,PZ) = #('554,p5,P5)' 

Taking (18) to  first order in dZ and dpl, we obtain 

ap dZ z2, = l+-l+-. 
P1 

Distance 

FIGURE 2. At time T < 0, the observer sees a shock propagating at a speed V' with strength 
parameters 2' and into a gas with particle velocity ug. At time T > 0, the observer 
sees a shock propagating a t  a speed V + d V  with the same strength parameters into a gas 
with particle velocity. 

By inserting (20) and (17) into (19), we obtain 

dZ 

and, again differentiating (10) with respect to p1 at constant p1 and ul, and 
introduciiig (16), we obtain 

= h(Pl,Pl, u1, 7). (22) 

Equation (22) has been derived in a manner very similar to Chisnell's derivation 

(iii) Finally, the physical situation, corresponding to the partial derivative 
avlau,, is a discontinuity across which only the initial particle velocity changes. 
We note that u1 is the particle velocity relative to the frame of the observer. 

of avppl. 
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Therefore, an analogous experimental situation would be for an observer to 
watch the propagation of a shock wave first from some inertial frame at  which 
u1 = u;. The observer sees the shock propagate with some velocity V' while the 
shock strength is 2' and the compression is p;l/p,. Then, at time T = 0, the 
observer changes to a different frame, one in which the particle velocity is 
ul = u; + du, where du is non-relativistic. 

To our observer, the flow of the shock wave appears as in figure 2 .  Since nothing 
has happened to the flow itself while the observer has changed frames, the shock 
will have the same strength parameters 8' and &p,, even though the shock 
velocity is different in the new frame of reference. The change in the shock 
velocity is du,, and therefore 

avpu, = 1. (23) 

The above equation is exact, while the other two partial derivatives are only 
first-order approximations. 

4. Verification of the shock front equation 
The partial derivatives have been calculated, and now the integral expression 

for the shock velocity as a function of position in a general flow field can be given 

x1 

+ s,=, h(Pl,P1> u1, V )  dP1. (24) 

Equation (24) is the most general possible equation, which can be used to 
describe the motion of a shock wave through an inhomogeneous medium, since 
no assumptions are made about specific relationships amongst the downstream 
variables. Of course, in many experiments such relationships will exist and can 
be used. As a simple application of the shock front equation, we have used it to 
predict the local variation in shock front velocity through a known rarefaction 
wave. In order to generate both the rarefaction wave arid the shock wave, we 
have spark-ignited a plane linear detonation in equim.olar acetylene-oxygen 
mixtures at an initial pressure of 200 Torr. The Chapman-Jouquet detonation 
proceeds at a constant velocity of 2-8 km/sec, and is immediately followed by a 
rarefaction wave. The detonation wave is incident upon a reflector, and a shock 
wave is reflected back through the rarefaction wave. This shock should obey the 
shock front equation (24). We assume that a secondary reaction does not occur 
in the reflected shock, because all of the oxygen should be used up in the initial 
detonation. 

The distribution of the particle velocity, density, and pressure through the 
rarefaction wave have been given by Taylor (1950). The particle velocity is 
linear along the characteristics and is zero at  the rarefaction tail. The density and 
pressure distributions are found assuming 

pp-Y = constant, 
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y is taken to be constant, y = 1.2 (Pearson & Fellinger 1965). 

Weak disturbance 
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FIGURE 3. The shock velocity is plotted against the fractional distance through the rare- 
faction wave. The points are measured values from two separate smear pictures under 
identical conditions. The line represents the predicted shock velocities using the shock 
front equation. The arrow indicates where the weak compression wave intersects the 
reflected shock. 

The shock velocity was calculated iteratively as a function of position, using 
a simple predictor numerical integration formula for (24), and using the measured 
value of 1*15km/sec for the starting velocity immediately at the reflector. The 
experimental and theoretical shock velocity profiles (figure 3) agree remarkably 
well, until a weak disturbance intersects the reflected shock. This disturbance 
is generated a t  the ignition end of the tube, and can be seen clearly in the smear 
picture (figure 4, plate 1). We expect that this disturbance is a weak compression 
wave, which changes the pressure, density and particle velocity distributions 
((25) and (26)) through the rarefaction wave. Thus, the measured shock velocity 
values verify the shock front equation (24) as long as the initial parameters are 
known. 

To further test the shock front equation, the gas mixture was changed by 
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mixing various amounts of inert gases (argon and helium) into the equimohr 
acetylene-oxygen. The detonations now proceeded at  a different velocity, which 
implies that a different, but still known, rarefaction wave was created. The 
initial pressure was increased to 300 Torr to  ensure that a detonation would still 
be produced. The values for the detonation velocity, initial reflected shock 

Gas 

25% He 
15% Ar 
33% Ar 
50% Ar 

Detonation Initial shock 
velocity vclocity 

Y (km/sec) (kmjsec) 

1.32 
1.27 
1.36 
1.44 

TABLE 1 

2.84 
2.36 
2-26 
2.15 

0.95 
0.85 
0-78 
0.76 

0 1 2 3 
Distance from reflector (cm) 

FIGURE 5.  The shock velocity is plotted against the distance through the rarefaction wave. 
The points are values measured from smear pictures. The lines represent the predicted 
shock velocity using the shock front oquation. 0, 75 yo C,H, - 0, and 25 yo He at 300 Torr. 
0,  85 yo C,H,-02 and 15 yo Ar at 300 Torr. A, 67 yo C,H2-00, and 33 yo Ar at 300 Tom. 
A, 60 yo C,H, - 0, and 50 yo Ar a t  300 Torr. 
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velocity and the adiabatic constant appear in table 1. The experimental values 
for the shock velocity (figure 5) again agree with the values predicted by the 
shock front equation. 

5. Summary 

shock velocity as a function of position in a general flow field: 
We have derived and experimentally verified an integral expression for the 

V(X1) = ~ ( X , )  + Ul(X1) - Ul(XrJ) 

2-1 

r" 

This shock front equation can be used to predict the local variation in shock 
front velocity through a completely general inhomogeneous flow field where the 
initial pressure, density, and particle velocity are known. It may also be useful 
in understanding certain astrophysical phenomena, such as colliding stars and 
the emission of mass from the surface of stars due to shock waves. The shock 
front equation also governs the motion of shock waves through the earth's 
atmosphere. 

This work was supported by a research grant of the Atomic Energy Control 
Board of Canada. The authors are grateful to Professor R. F. Chisnell for his in- 
teresting comments on the manuscript. 
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FIGURE 4. This smear picture shows the complete detonation arid the reflected shock 
being accelerated through the rarefaction wave. The gas is C,H, + 0, at 200 Torr. The weak 
compression wave which destroys the rarefaction wave equations can be clearly seen 
behind the detonation and looks almost like a characteristic of the rarefaction wave. The 
apparatus is sketched. 
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